1. Find the prime factorization of 20^{21}, the number of divisors of 20^{21}, and the sum of the divisors of 20^{21}.
2. If a positive integer n has 7 divisors, how many divisors does n^{2} have?
3. Find the remainder when 2203543267 is divided by
(a) 2 , (b) 3 , (c) 4 , (d) 5 , (e) 6 , (f) 8 , (g) 9 , (h) 10 , (i) 11.
4. How many 4-digit positive integers (that is, integers between 1000 and 9999, inclusive) having only even digits are divisible by 5 ?
5. Suppose x and y be positive integers such that

$$
\frac{1}{x}+\frac{1}{y}=\frac{1}{7}
$$

Find the sum of all possible values of x.
6. Find the number of ordered pairs of positive integers (m, n) such that $m^{2} n=20^{21}$.
7. What two-digit number is three times the sum of its digits?
8. In how many consecutive zeroes does the product $115 \times 116 \times 117 \times \ldots \times 201$ end?
9. What four-digit number has tens digit 2 and units digit 8 , is a multiple of 16 , and when its digits are reversed the result is also a multiple of 16 ?
10. Find the sum of the prime factors of $2^{12}-1$.
11. Aiden writes his favorite four-digit positive integer on a piece of paper. Brandon reverses Aiden's number. If the resulting number is four times Aiden's number, find Aiden's number.
12. Find the remainder when 20^{21} is divided by (a) 7 and (b) 77 .
13. Kevin writes a sequence of numbers starting with 1 , and repeatedly adding 1 until a multiple of 2 is reached. He then repeatedly adds 2 to this value until a multiple of 3 is reached, then adds 3 until he gets a multiple of 4 , and so on. The first four terms are $1,2,4,6$. What will be the last term Kevin writes down before he adds 2000 for the first time?
14. What is the greatest integer less than or equal to

$$
\frac{3^{100}+2^{100}}{3^{96}+2^{96}} ?
$$

15. When 9 ! is expressed as an integer in base 9 , the result ends in m zeros, and the last nonzero digit immediately preceding the m zeros is n. What is the value of the ordered pair (m, n) ?
16. Let m and n be positive integers satisfying the conditions $\operatorname{gcd}(m+n, 210)=$ $1, m^{m}$ is a multiple of n^{n}, and m is not a multiple of n. Find the least possible value of $m+n$.

Answer key:

1. $2^{42} \cdot 5^{21}, 946,\left(2^{43}-1\right)\left(5^{22}-1\right)$
2. 13
3. (a) 1 , (b) 1 , (c) 3 , (d) 2 , (e) 1 , (f) 3 , (g) 7 , (h) 7 , (g) 9
4. 100
5. 78
6. 242
7. 27
8. 23
9. 28
10. 2178
11. (a) 6 , (b) 20
12. 3998000
13. 81
14. $(2,7)$
15. 407
