1. Define the digital reduction of a two-digit positive integer $\underline{A B}$ to be the quantity $\underline{A B}-A-B$. Find the greatest common divisor of the digital reductions of all the two-digit positive integers. (For example, the digital reduction of 62 is $62-6-2=54$.)
2. For each positive integer n between 1 and 1000 (inclusive), Ben writes down a list of n 's factors, and then computes the median of that list. He notices that for some n, that median is actually a factor of n. Find the largest n for which this is true.
3. The six-digit number $\underline{2} \underline{2} \underline{2} \underline{0} \underline{A}$ is prime for only one digit A. What is A ?
4. Let $\mathrm{k}=20^{\wedge} 20$. Suppose that $20^{\wedge} \mathrm{k} / \mathrm{k}^{\wedge} 20=20^{\wedge} \mathrm{n}$. Find the largest power of 20 that divides n .
5. How many of the first ten numbers of the sequence $121,11211,1112111, \ldots$ are prime numbers?
6. Find the largest integer n for which $\frac{101^{n}+103^{n}}{101^{n-1}+103^{n-1}}$ is an integer.
7. What is the largest prime p for which the numbers $p^{2}-8, p^{2}-2$, and $p^{2}+10$ are all prime as well?
8. Let D be the set of positive divisors of 700 . The nonempty subsets of D with an even sum can be expressed as a^b-c, where a,b,c are positive integers with a as small as possible. Find $a+b+c$.
9. For any prime number p, let S_{p} be the sum of all the positive divisors of $37^{p} p^{37}$ (including 1 and $37^{p} p^{37}$). Find the sum of all primes p such that S_{p} is divisible by p.
10. When 15 ! is converted to base 8 , it is expressed as $\overline{230167356 a b c 00}$ for some digits a, b, and c. Find the missing string $\overline{a b c}$.

Answers:

1. 9
2. 961
3. 9
4. 400
5. 0
6. 1
7. 7
8. 20
9. 19
10. 540
