1. Jamar bought some pencils costing more than a penny each at the school bookstore and paid $\$ 1.43$. Sharona bought some of the same pencils and paid $\$ 1.87$. How many more pencils did Sharona buy than Jamar?
2. In a middle-school mentoring program, a number of the sixth graders are paired with a ninth-grade student as a buddy. No ninth grader is assigned more than one sixth-grade buddy. If $\frac{1}{3}$ of all the ninth graders are paired with $\frac{2}{5}$ of all the sixth graders, what fraction of the total number of sixth and ninth graders have a buddy?
3. Let R be a set of nine distinct integers. Six of the elements are $2,3,4,6,9$ and 14 . What is the number of possible values of the median of R ?
4. Suppose that $\left\{a_{n}\right\}$ is an arithmetic sequence with
$a_{1}+a_{2}+\cdots+a_{100}=100$ and $a_{101}+a_{102}+\cdots+a_{200}=200$. What is the value of $a_{2}-a_{1}$? Express your answer as a common fraction.
5. Let a and b be distinct real numbers for which $\frac{a}{b}+\frac{a+10 b}{b+10 a}=2$. Find $\frac{a}{b}$ in simplest form.
6. Suppose that a parabola has vertex $\left(\frac{1}{4},-\frac{9}{8}\right)$, and equation $y=a x^{2}+b x+c$, where $a>0$ and $a+b+c$ is an integer. What is the minimum possible value of a ? Express your answer as a common fraction.
7. The real root of the equation $8 x^{3}-3 x^{2}-3 x-1=0$ can be written in the form $\frac{\sqrt[3]{a}+\sqrt[3]{b}+1}{c}$, where a, b, and c are positive integers. Find $a+b+c$.
8. Find the number of positive integers n less than 1000 for which there exists a positive real number x such that $n=x\lfloor x\rfloor$.
9. Consider the sequence $\left(a_{k}\right)_{k \geq 1}$ of positive rational numbers defined by $a_{1}=\frac{2020}{2021}$ and for $k \geq 1$, if $a_{k}=\frac{m}{n}$ for relatively prime positive integers m and n, then $a_{k+1}=\frac{m+18}{n+19}$. Determine the sum of all positive integers j such that the rational number a_{j} can be written in the form $\frac{t}{t+1}$ for some positive integer t.

Answers:

1. 4
2. $4 / 11$
3. 7
4. $1 / 100$
5. $4 / 5$
6. $2 / 9$
7. 98
8. 496
9. 59
