- 1. Jamar bought some pencils costing more than a penny each at the school bookstore and paid \$1.43. Sharona bought some of the same pencils and paid \$1.87. How many more pencils did Sharona buy than Jamar?
- 2. In a middle-school mentoring program, a number of the sixth graders are paired with a ninth-grade student as a buddy. No ninth grader is assigned more than one sixth-grade buddy. If $\frac{1}{3}$ of all the ninth graders are paired with $\frac{2}{5}$ of all the sixth graders, what fraction of the total number of sixth and ninth graders have a buddy?
- 3. Let R be a set of nine distinct integers. Six of the elements are 2, 3, 4, 6, 9, and 14. What is the number of possible values of the median of $\,R\,$?
- 4. Suppose that $\{a_n\}$ is an arithmetic sequence with $a_1 + a_2 + \dots + a_{100} = 100$ and $a_{101} + a_{102} + \dots + a_{200} = 200$. What is the value of $a_2 - a_1$? Express your answer as a common fraction.
- 5. Let a and b be distinct real numbers for which $\frac{a}{b} + \frac{a+10b}{b+10a} = 2$. Find $\frac{a}{b}$ in simplest form.
- 6. Suppose that a parabola has vertex $(\frac{1}{4}, -\frac{9}{8})$, and equation $y = ax^2 + bx + c$, where a > 0 and a + b + c is an integer. What is the minimum possible value of a? Express your answer as a common fraction.
- 7. The real root of the equation $8x^3 3x^2 3x 1 = 0$ can be written in the form $rac{\sqrt[3]{a}+\sqrt[3]{b}+1}{c}$, where a , b , and c are positive integers. Find a+b+c .
- 8. Find the number of positive integers n less than 1000 for which there exists a positive real number x such that $n = x \lfloor x \rfloor$.
- 9. Consider the sequence $(a_k)_{k\geq 1}$ of positive rational numbers defined by $a_1=rac{2020}{2021}$ and for $k \geq 1$, if $a_k = \frac{m}{n}$ for relatively prime positive integers m and n , then $a_{k+1} = \frac{m+18}{n+19}$. Determine the sum of all positive integers j such that the rational number a_j can be written in the form $\overline{t+1}$ for some positive integer t.

Answers:

- 1. 4
- 2. 4/11
- 3. 7
- 4. 1/100
- 5. 4/5
- 6. 2/9
- 7. 98
- 8. 496
- 9. 59