1. If $a=-2$, what is the largest number in the set $\left\{-3 a, 4 a, \frac{24}{a}, a^{2}, 1\right\}$?
2. One proposal for new postage rates for a letter was 30 cents for the first ounce and 22 cents for each additional ounce (or fraction of an ounce). What is the postage for a letter weighing 4.5 ounces?
3. A straight concrete sidewalk is to be 3 feet wide, 60 feet long, and 3 inches thick. How many cubic yards of concrete must a contractor order for the sidewalk if concrete must be ordered in a whole number of cubic yards?
4. Eight friends ate at a restaurant and agreed to share the bill equally. Because Judi forgot her money, each of her seven friends paid an extra $\$ 2.50$ to cover her portion of the total bill. What was the total bill?
5. Ted's grandfather used his treadmill on 3 days this week. He went 2 miles each day. On Monday he jogged at a speed of 5 miles per hour. He walked at the rate of 3 miles per hour on Wednesday and at 4 miles per hour on Friday. If Grandfather had always walked at 4 miles per hour, he would have spent less time on the treadmill. How many minutes less?
6. Suppose a, b, and c are nonzero real numbers, and $a+b+c=0$. What are the possible value(s) for $\frac{a}{|a|}+\frac{b}{|b|}+\frac{c}{|c|}+\frac{a b c}{|a b c|}$?
7. Farmer Yang has a 2023×2023 square grid of corn plants. One day, the plant in the very center of the grid becomes diseased. Every day, every plant adjacent to a diseased plant becomes diseased. After how many days will all of Yang’s corn plants be diseased?
8. Find the smallest positive integer b such that 1111 in base b is a perfect square. If no such b exists, write "No solution".

There exist unique nonnegative integers A, B between 0 and 9 , inclusive, such that

$$
(1001 \cdot A+110 \cdot B)^{2}=57,108,249
$$

Find $10 \cdot A+B$.
9.

Compute the smallest positive integer n such that

$$
0<\sqrt[3]{n}-\lfloor\sqrt[3]{n}\rfloor<\frac{1}{2023} .
$$

10.
11. Given $n=2023$, sort the 6 values $n^{n^{2}}, 2^{2^{2^{n}}}, n^{2^{n}}, 2^{2^{n^{2}}}, 2^{n^{n}}$, and $2^{2^{2^{2}}}$ from least to greatest. Give your answer as a 6 digit permutation of the string " 123456 ", where the number i corresponds to the i-th expression in the list, from left to right.
12. Find all pairs of integers (x, y) such that $x \geq 0$ and $\left(6^{x}-y\right)^{2}=6^{x+1}-y$.

Answers:

1. 6
2. $\$ 1.18$
3. 2
4. 140
5. 4
6. 0
7. 2022
8. 7
9. 75
10. 4097
11. 163542
12. (1,0), (1,11), (4,1215), and (4,1376)
